

## 

# **Forward AM TPU Portfolio Powders & Filaments**

Innovating Additive Manufacturing

# Discover one of the largest portfolios of high-performance materials for Additive Manufacturing

At Forward AM, we accompany you from first idea to final printed part. Our portfolio includes materials and solutions for all major Additive Manufacturing technologies - from powders to plastic and metal filaments to photopolymers.

pology Optimization to improve structural stiffne

Basilar a informal sile about

© Copyright 2024 BASF Forward AM. All rights reserved. The information contained herein is provided for information purposes only. BASF Forward AM shall not be liable for technical or editorial errors or omissions contained herein. Product specifications and all information herein is subject to change without notice.



# **POWDER BED FUSION**

Explore the Ultrasint® line of performance polymers that are perfectly adapted to scaled Additive Manufacturing production for any application.

# **Mechanical Properties Comparison**

|                                                           |    | PP Line       | AP Line |                       | PA11 Line                   |                          |                           |                     | TPU Line           |                      |                    |  |
|-----------------------------------------------------------|----|---------------|---------|-----------------------|-----------------------------|--------------------------|---------------------------|---------------------|--------------------|----------------------|--------------------|--|
|                                                           |    | PP 1400 Black | AP26    | PA11<br>(Conditioned) | PA11 Black<br>(Conditioned) | PA11 CF<br>(Conditioned) | PA11 ESD<br>(Conditioned) | TPU01<br>for HP MJF | TPU 88A            | TPU 88A Black        | TPU 90A LT         |  |
| HDT A [°C]<br>ISO 75-2                                    |    | 62            | 57      | 76                    | 62                          | 151                      | 111                       | 97 <sup>(3)</sup>   | 98 <sup>(3)</sup>  | 101,7 <sup>(3)</sup> |                    |  |
| HDT B [°C]<br>ISO 75-2                                    |    | 102           | 94      | 176                   | 177                         | 189                      | 186                       |                     |                    |                      |                    |  |
| Shore A Hardness<br>DIN ISO 7619-1                        |    | -             | -       | - 1                   | -                           | -                        | -                         | 88-90               | 88-90              | 86-88                | 90                 |  |
| Tensile Strength [MPa]                                    | XY | 29            | 40      | 45                    | 45                          | 71                       | 55                        | 9                   | 8                  | 8                    | 9                  |  |
| ISO 527-2 (23 °C)                                         | ZX | 29            | 30      | 46                    | 45                          | 48                       | 47                        | 7                   | 7                  | 5                    | 7                  |  |
| Elongation at Break [%]                                   | XY | 25            | 2,5     | 45                    | 42                          | 11                       | 22                        | 280 (1)             | 270 (1)            | 360 (1)              | 280 (1)            |  |
| ISO 527-2 (23 °C)                                         | ZX | 25            | 2,0     | 31                    | 34                          | 17                       | 31                        | 150 <sup>(1)</sup>  | 130 <sup>(1)</sup> | 100 (1)              | 120 (1)            |  |
| E Modulus [MPa]                                           | XY | 1250          | 2500    | 1100                  | 1150                        | 4500                     | 2300                      | 85 <sup>(2)</sup>   | 75 <sup>(2)</sup>  | 85 <sup>(2)</sup>    | 110 <sup>(1)</sup> |  |
| ISO 527-2 (23 °C)                                         | ZX | 1300          | 2500    | 1250                  | 1200                        | 2000                     | 1500                      | -                   | -                  | -                    |                    |  |
| Charpy Impact Strength<br>(notched) [k.l/m <sup>2</sup> ] | XY | 4,0           | 2,2     | 8,3                   | 11                          | 6,7                      | 7,3                       | No break            | No break           | No break             | No break           |  |
| ISO 179-1                                                 | ZX | 4,0           | -       | 4,5                   | 11                          | 4,7                      | 5,3                       | No break            | No break           | No break             | No break           |  |
| Charpy Impact Strength                                    | XY | 34            | 12      | 198                   | No break                    | 63                       | 101                       | -                   | -                  | -                    | -                  |  |
| ISO 179-1                                                 | ZX | 28            | -       | 85                    | 75                          | 51                       | 107                       | -                   | -                  | -                    | -                  |  |

(1) DIN 53504, S2

(2) ISO 527-2, 1A (3) Vicat/A (10 N) / °C - DIN EN ISO 306

(4) Izod Test Method A with notched ASTM D256

# Printer Compatibility

|            |                                        | PP Line       | AP Line |      | PA11       | Line    |          |                     | TPU     | Line          |            |
|------------|----------------------------------------|---------------|---------|------|------------|---------|----------|---------------------|---------|---------------|------------|
| Compatibl  | e<br>Imeter kit required               | PP 1400 Black | AP26    | PA11 | PA11 Black | PA11 CF | PA11 ESD | TPU01<br>for HP MJF | TPU 88A | TPU 88A Black | TPU 90A LT |
| HP         | 5200 Series                            |               |         |      |            |         |          |                     |         |               |            |
| Prodways   | P1000 / P100X                          |               |         |      |            |         |          |                     |         |               |            |
| 3D Systems | Sinterstations / Vanguard /<br>sPro 60 |               |         |      |            |         |          |                     |         |               |            |
|            | MfgPro230 xS                           |               |         |      |            |         |          |                     |         |               |            |
| хүдр       | MfgPro236 xS                           |               |         |      |            |         |          |                     |         |               |            |
|            | Flight Series                          |               |         |      |            |         |          |                     |         |               |            |
| Farsoon    | HT403P / HT/ST25xP                     |               |         |      |            |         |          |                     |         |               |            |
|            | SS403P / eForm                         |               |         |      |            |         |          |                     |         |               |            |
| EOS        | P1xx                                   |               |         |      |            |         |          |                     |         |               |            |
|            | P3xx/P7xx                              |               |         |      |            |         |          |                     |         |               |            |

# **Tests & Certification Summary**

| Statement Available |                                                         | PP Line       | AP Line | PA11 Line |            |         |          | TPU Line            |         |               |            |
|---------------------|---------------------------------------------------------|---------------|---------|-----------|------------|---------|----------|---------------------|---------|---------------|------------|
|                     |                                                         | PP 1400 Black | AP26    | PA11      | PA11 Black | PA11 CF | PA11 ESD | TPU01<br>for HP MJF | TPU 88A | TPU 88A Black | TPU 90A LT |
| duct Statements     | Skin Contact                                            |               |         |           |            |         |          |                     |         |               |            |
|                     | USP Class IV                                            |               |         |           |            |         |          |                     |         |               |            |
|                     | Food Contact                                            |               |         |           |            |         |          |                     |         |               |            |
| Pro                 | UL Blue Card                                            |               |         |           |            |         |          |                     |         |               |            |
| gui                 | Long Term Heat Aging                                    |               |         |           |            |         |          |                     |         |               |            |
| iic Testi           | UV Resistance<br>ISO 4892-2                             |               |         |           |            |         |          |                     |         |               |            |
| Application Specif  | Hydrolysis Resistance                                   |               |         |           |            |         |          |                     |         |               |            |
|                     | Air Tightness / Burst Pressure                          |               |         |           |            |         |          |                     |         |               |            |
|                     | Temperature Performance<br>High Temperature Mechanicals |               |         |           |            |         |          |                     |         |               |            |

|             |                                               | PP Line       | AP Line |      | PA11       | Line    |          |                     | TPU Line |               |            |  |
|-------------|-----------------------------------------------|---------------|---------|------|------------|---------|----------|---------------------|----------|---------------|------------|--|
|             |                                               | PP 1400 Black | AP26    | PA11 | PA11 Black | PA11 CF | PA11 ESD | TPU01<br>for HP MJF | TPU 88A  | TPU 88A Black | TPU 90A LT |  |
|             | Specific Volume Resistivity<br>IEC 62631-3-1  |               |         |      |            |         |          |                     |          |               |            |  |
| trical      | Specific Surface Resistivity<br>IEC 62631-3-2 |               |         |      |            |         |          |                     |          |               |            |  |
| Elect       | Dielectric Strength<br>IEC 60234-1            |               |         |      |            |         |          |                     |          |               |            |  |
|             | CTI<br>IEC 60112                              |               |         |      |            |         |          |                     |          |               |            |  |
|             | Fatigue<br>Rossflex                           |               |         |      |            |         |          |                     |          |               |            |  |
| ne<br>lance | Flammability<br>UL 94                         | •             |         |      |            |         |          |                     |          |               |            |  |
| Fla         | Flammability<br>FMVSS 302                     |               |         |      |            |         |          |                     |          |               |            |  |

## **Sustainability Summary**

|                                                              | PP Line       | AP Line | PA11 Line |            |         | TPU Line |                     |         |               |            |
|--------------------------------------------------------------|---------------|---------|-----------|------------|---------|----------|---------------------|---------|---------------|------------|
| <ul> <li>Currently Available</li> <li>In Progress</li> </ul> | PP 1400 Black | AP26    | PA11      | PA11 Black | PA11 CF | PA11 ESD | TPU01<br>for HP MJF | TPU 88A | TPU 88A Black | TPU 90A LT |
| Recyclable                                                   |               |         |           |            |         |          |                     |         |               |            |
| Refresh Rate (Old/New in %) *                                | 60/40         | 100/0   | 50/50     | 50/50      | 50/50   | 50/50    | 80/20               | 80/20   | 80/20         | 80/20      |
| Take Back Program                                            |               |         |           |            |         |          |                     |         |               |            |
| Life Cycle Assessment                                        |               |         |           |            |         |          |                     |         |               |            |
| Carbon Compensation                                          |               |         |           |            |         |          |                     |         |               |            |

\*Typical value. The exact refresh rate depends on the machine type and printing technology, processing parameters, material usage intensity, packing density, part geometry and individual part property requirements.

Life Cycle Assessment (LCA): Study that calculates how much environmental impact is associated with every step of a product. The environmental score for these materials is representative of the stages of "Raw material extraction and production" and "Material preparation for 3D printing".

Carbon Compensation: A strategy to reduce carbon emissions by investing in practices that absorb or mitigate CO2.

Take Back Program: The collection of powder and end parts to reduce plastic waste and promote sustainability.

Refresh Rate: minimum ratio of fresh / virgin powder one needs to add to your pre-used, unsintered powder to maintain its best printing quality.

# **Post-Processing Summary**

|                     | PP Line       | AP Line |      | PA11       | Line    |          | TPU Line            |         |               |            |
|---------------------|---------------|---------|------|------------|---------|----------|---------------------|---------|---------------|------------|
| Compatible          | PP 1400 Black | AP26    | PA11 | PA11 Black | PA11 CF | PA11 ESD | TPU01<br>for HP MJF | TPU 88A | TPU 88A Black | TPU 90A LT |
| Chemical Smoothing  | •             | •       |      |            |         |          |                     |         |               |            |
| Ultracur3D® Coat F+ |               |         |      |            |         |          |                     |         |               |            |
| Dyeing              |               |         |      |            |         |          |                     |         |               |            |

# Materials enabled by BASF

Available through Printer Manufacturers



HP 3D HR PP

PRODWAYS

Prodways PP 1200



FLEXA Performance PA11 Onyx PA11 CF PA11 ESD



## **Ultrasint® TPU01**

| echnology:       | Color: |
|------------------|--------|
| owder Bed Fusion | Gray   |

Machine Compatibility: MJF Machines HP Jet Fusion 5200 Series



Highly flexible Shore A 88 hardness High Reusability

Up to 80% of powder reusability



Lattice Structures

Enabled by BASF Ultrasim®

# **Ultrasint® TPU01**

## Suited for:







Industrial

Sports



Automotive

Medical Applications

#### Access all resources by scanning the QR code



This information and values are presented as guidance only and based on Forward AM's knowledge and experience. It is believed to be accurate, however all guarantees are explicitly denied. This document was updated September 2023.

## **Technical Specifications**

| Mechanical properties                         | Standard      | X / Z     |
|-----------------------------------------------|---------------|-----------|
| Charpy Impact Strength Notched -10°C (kJ/ m²) | ISO 179-1     | 46 / 44   |
| E-Modulus (MPa)                               | ISO 527-2, 1A | 85 / 85   |
| Tensile Strength (MPa)                        | DIN 53504, S2 | 9/7       |
| Elongation at Break (%)                       | DIN 53504, S2 | 280 / 150 |



**Complete TDS** 

## **Tests & Certifications**

| Skin Contact     | UV Stability        |
|------------------|---------------------|
| <br>ISO 10993-10 | ISO 4892-2B Cycle 3 |
| & ISO 10993-5    | ISO 4892-2A Cycle 1 |

#### **Post-Processing and Related Services**

#### **Chemical Smoothing**

#### Ultracur3D® Coat F+



Flexible waterborn 2k-basecoat designed to offer exceptional flexibility for elastic 3D Printing Materials and enables new possibilities for advanced applications.

#### Ultrasim® 3D Lattice Design



Lattice engineering unlocks the potential of high-performance materials for any application. Customized lattices can be engineered to specific mechanical properties.



Both mechanical and chemical smoothing will improve material performance while enhancing the appeal, durability, surface roughness and overall quality.

Whitepaper available.



## Ultrasint® TPU 88A

| echnology:       | Color: |
|------------------|--------|
| owder Bed Fusion | White  |

#### Machine Compatibility:

All SLS machines Farsoon - EOS - 3D Systems - XYZprinting



High Reusability Up to 80% of powder reusability Excellent Surface Quality and High Level of Detail



Highly flexible Shore A 88 hardness

# **Ultrasint® TPU 88A**

## Suited for:



Footwear

Sports

Automotive

Medical Applications

Industrial

Access all resources by scanning the QR code



This information and values are presented as guidance only and based on Forward AM's knowledge and experience. It is believed to be accurate, however all guarantees are explicitly denied. This document was updated September 2023.

## **Technical Specifications**

| Mechanical properties                            | Standard         | X / Z     |
|--------------------------------------------------|------------------|-----------|
| Charpy Impact Strength Notched -10°C (kJ/<br>m²) | DIN EN ISO 179-1 | 60 / 58   |
| E-Modulus (MPa)                                  | ISO 527-2, 1A    | 75 / 75   |
| Tensile Strength (MPa)                           | DIN 53504, S2    | 8/7       |
| Elongation at Break (%)                          | DIN 53504, S2    | 270 / 130 |



**Complete TDS** 

#### **Tests & Certifications**

| Skin Contact  | UV Stability        |
|---------------|---------------------|
| ISO 10993-10  | ISO 4892-2B Cycle 3 |
| & ISO 10993-5 | ISO 4892-2A Cycle 1 |

## **Post-Processing and Related Services**

**Chemical Smoothing** 

Ultracur3D® Coat F+

Dveina



Liquid dyeing ensures that color evenly reaches all surfaces of the parts including small cavities, lattices, and hollowed parts.

Ultrasim® 3D Lattice Design



Lattice engineering unlocks the potential of highperformance materials for any application. Customized lattices can be engineered to specific mechanical properties.



Both mechanical and chemical smoothing will improve material performance while enhancing the appeal. durability, surface roughness and overall quality.

The Forward AM

Ultracur3D® Coat F+

is a flexible waterborn

2k-basecoat designed

to offer exceptional

flexibility for 3D Printing

Materials and enables new

possibilities for advanced

applications.



## Ultrasint® TPU 88A Black



# Technology: Color: Powder Bed Fusion Black

#### Machine Compatibility:

SLS machines including Desktop Machines EOS - Farsoon - XYZprinting - 3D Systems



Suitable for Desktop Machines High Reusability

Up to 80% of powder reusability



High Elasticity and Rebound Elongation at Break - up to 360%

# **Ultrasint® TPU 88A** Black

## Suited for:







Footwear

Industrial Sports

Automotive

Medical Applications

Access all resources by scanning the QR code



This information and values are presented as guidance only and based on Forward AM's knowledge and experience. It is believed to be accurate, however all guarantees are explicitly denied. This document was updated February 2023.

## **Technical Specifications**

| Mechanical properties                            | Standard         | x / z               |  |
|--------------------------------------------------|------------------|---------------------|--|
| Charpy Impact Strength Notched -30°C (kJ/<br>m²) | DIN EN ISO 179-1 | No break / No break |  |
| E-Modulus (MPa)                                  | ISO 527-2, 1A    | 85/85               |  |
| Tensile Strength (MPa)                           | DIN 53504, S2    | 8/5                 |  |
| Elongation at Break (%)                          | DIN 53504, S2    | 360/100             |  |



**Complete TDS** 

## **Tests & Certifications**

| UV Stability        | Skin Contact  |
|---------------------|---------------|
| ISO 4892-2A Cycle 1 | ISO 10993-10  |
|                     | & ISO 10993-5 |
|                     |               |

#### **Post-Processing**

#### **Chemical Smoothing**

#### Ultracur3D® Coat F+



Read the whitepaper to learn in detail how to surface treat thermoplastic polymer 3D-printed parts and obtain parts with improved airtightness.

Whitepaper available.



Flexible waterborn 2k-basecoat designed to offer exceptional flexibility for elastic 3D Printing Materials and enables new possibilities for advanced applications.



# Ultrasint® TPU 90A LT

| echnology:       | Color: |
|------------------|--------|
| owder Bed Fusion | White  |

#### Machine Compatibility:

All SLS machines Farsoon - EOS - 3D Systems - XYZprinting





Lightweight

High Rebound



Highly flexible

# **Ultrasint® TPU 90A** LT

## Suited for:





Footwear

Industrial

Sports

Medical Automotive Applications

> Access all resources by scanning the QR code



This information and values are presented as guidance only and based on Forward AM's knowledge and experience. It is believed to be accurate, however all guarantees are explicitly denied. This document was updated September 2023.

## **Technical Specifications**

| Mechanical properties   | Standard          | X / Z |
|-------------------------|-------------------|-------|
| Tensile Modulus (MPa)   | ISO 527-2, 1A     | 110   |
| Energy Return (%)       | DIN 53512         | 66    |
| Density (g/kg)          | DIN EN ISO 1183-1 | 1.05  |
| Elongation at Break (%) | DIN 53504, S2     | 280   |



**Complete TDS** 

## **Tests & Certifications**

Cytotoxicity

Passed

## **Post-Processing and Related Services**

**Chemical Smoothing** 

Ultracur3D® Coat F+





Liquid dyeing ensures that color evenly reaches all surfaces of the parts including small cavities, lattices, and hollowed parts.

Ultrasim® 3D Lattice Design



Lattice engineering unlocks the potential of highperformance materials for any application. Customized lattices can be engineered to specific mechanical properties.



Both mechanical and chemical smoothing will improve material performance while enhancing the appeal. durability, surface roughness and overall quality.





The Forward AM Ultracur3D® Coat F+ is a flexible waterborn 2k-basecoat designed to offer exceptional flexibility for 3D Printing Materials and enables new possibilities for advanced applications.







# FUSED FILAMENT FABRICATION

Explore one of the broadest portfolios for Fused Filament Fabrication. Our Ultrafuse® line comprises filaments ranging from engineering-grade materials, through reinforced and support materials, to advanced metal filaments for a variety of industrial applications.

|                                                    |    | L       | Jitrafuse® Fle | kible Filaments | 5       |
|----------------------------------------------------|----|---------|----------------|-----------------|---------|
|                                                    |    | TPU 85A | TPU 64D        | TPU 95A         | TPS 90A |
| <b>Shore A Hardness (3 s)</b><br>ISO 7619-1        |    | 85,0    | 58 (Shore D)   | 92,0            | 89,0    |
| Abrasion Resistance [mm <sup>3</sup> ]<br>ISO 4649 |    | 82,0    | 43,0           | 64,0            | 111,0   |
| Compression Set at 23 °C, 72 h [%]<br>ISO 815      |    | 26,0    | 25,0           | 38,0            | 75,0    |
| Elongation at Break TPE [%]                        | XY | 600,0   | 399,0          | 611,0           | -       |
| ISO 527                                            | ZX | 320,0   | 115,0          | 192,0           | -       |
| Stress at Break TPE [MPa]                          | XY | 34,0    | 37,0           | 44.2            | 7,0     |
| ISO 527                                            | ZX | 10,0    | 19,0           | 12.2            | 2,0     |
|                                                    | XY | 80,0    | 66,0           | 90,0            | 10,0    |
| Tear Strength [kN/m]<br>ISO 34-1                   | XZ | 18,0    | 37,0           | 8,0             | 5,0     |
|                                                    | ZX | 30,0    | 79,0           | 14,0            | 4,0     |

## Ultrafuse® TPU 85A





High tensile strength and outstanding resistance to tear propagation



High resistance to oils, greases, oxygen and ozone



Excellent damping characteristics



Very good lowtemperature flexibility

## Ultrafuse® TPU 85A

#### Suited for:





Automotive, industrial manufacturing agriculture and construction Footwear, Functional sports and flexible parts leisure

cess all resources by scanning the OR code



This information and values are presented as guidance only and based on Forward AM's knowledge and experience. It is believed to be accurate, however all guarantees are explicitly denied. This document was updated February 2023.

#### **Technical Specifications**

| Mechanical properties                  | Standard   | Value<br>XY/XZ/ZX |
|----------------------------------------|------------|-------------------|
| Compression Set at 23 °C, 72 h (%)     | ISO 815    | 26,0              |
| Abrasion Resistance (mm <sup>3</sup> ) | ISO 4649   | 82,0              |
| Shore A Hardness (3 s)                 | ISO 7619-1 | 85,0              |
| Elongation at Break TPE (%)            | ISO 527    | 600 / - / 320     |
| Stress at Break TPE (MPa)              | ISO 527    | 34 / - / 10       |
| Tear Strength (kN/m)                   | ISO 34-1   | 80 / 18 / 30      |



**Complete TDS** 

## **Advanced Testing**



## **Print Settings**

| Nozzle Temperature<br>[°C] | Build Chamber<br>Temperture [°C] | Bed Temperture [°C] | Bed Material | Nozzle Diameter<br>[mm] | Print Speed [mm/s] |
|----------------------------|----------------------------------|---------------------|--------------|-------------------------|--------------------|
| 200-220                    | -                                | 40                  | glass        | ≥0,4                    | 15-40              |

# Ultrafuse® TPU 64D

#### Flexible Filaments

**Technology:** Fused Filament Fabric Color:

White, Black



High resistance to oils, greases, oxygen and ozone



Compatible with water soluble support



High impact resistance



High wear and abrasion resistance

## Ultrafuse® TPU 64D

#### Suited for:





Tooling, jigs and fixtures

Functional Wear and tear flexible parts



#### **Technical Specifications**

| Mechanical properties                  | Standard | Value<br>XY/XZ/ZX |
|----------------------------------------|----------|-------------------|
| Compression Set at 23 °C, 72 h (%)     | ISO 815  | 25,0              |
| Abrasion Resistance (mm <sup>3</sup> ) | ISO 4649 | 43,0              |
| Elongation at Break TPE (%)            | ISO 527  | 399 / - / 115     |
| Stress at Break TPE (MPa)              | ISO 527  | 37 / - / 19       |
| Tear Strength (kN/m)                   | ISO 34-1 | 66 / 37 / 79      |



**Complete TDS** 

#### **Advanced Testing**

Skin Contact / Biocompatibility

ISO 10993-5; ISO 10993-10

Passed

## **Print Settings**

| Nozzle Temperature<br>[°C] | Build Chamber<br>Temperture [°C] | Bed Temperture [°C] | Bed Material | Nozzle Diameter<br>[mm] | Print Speed [mm/s] |
|----------------------------|----------------------------------|---------------------|--------------|-------------------------|--------------------|
| 230-255                    | -                                | 55                  | glass        | ≥0,4                    | 30-60              |



# Ultrafuse® TPU 95A

Flexible Filaments

**Technology:** Fused Filament Fabric Color:

White, Black





Perfect for fast printing

High abrasion resistance



Good resistance to oils and common industrially used chemicals Printable on direct drive and bowden style

## Ultrafuse® TPU 95A

#### Suited for:



Wear and tear application

ear Functional n flexible parts

ccess all resources by scanning the OR code



This information and values are presented as guidance only and based on Forward AM's knowledge and experience. It is believed to be accurate, however all guarantees are explicitly denied. This document was updated February 2023.

#### **Technical Specifications**

| Mechanical properties                  | Standard   | Value<br>xy/xz/zx |
|----------------------------------------|------------|-------------------|
| Compression Set at 23 °C, 72 h (%)     | ISO 815    | 38,0              |
| Abrasion Resistance (mm <sup>3</sup> ) | ISO 4649   | 64,0              |
| Shore A Hardness (3 s)                 | ISO 7619-1 | 92,0              |
| Elongation at Break TPE (%)            | ISO 527    | 611 / - / 192     |
| Stress at Break TPE (MPa)              | ISO 527    | 44,2 / - / 12,2   |
| Tear Strength (kN/m)                   | ISO 34-1   | 90/8/14           |



**Complete TDS** 

#### **Advanced Testing**

Skin Contact / Biocompatibility

ISO 10993-5; ISO 10993-10

Passed

#### **Print Settings**

| Nozzle Temperature<br>[°C] | Build Chamber<br>Temperture [°C] | Bed Temperture [°C] | Bed Material | Nozzle Diameter<br>[mm] | Print Speed [mm/s] |
|----------------------------|----------------------------------|---------------------|--------------|-------------------------|--------------------|
| 210-230                    | -                                | 40                  | glass        | ≥0,4                    | 15-40              |

# Ultrafuse® TPS 90A



#### Flexible Filaments

**Technology:** Fused Filament Fabr Color:

Natural White



Non-slip properties Reduced moisture uptake



Excellent layer adhesion

Very good lowtemperature flexibility

## **Ultrafuse® TPS 90A**

## Suited for:





Functional flexible parts Handles of

Seals and





Tooling, jigs and fixtures



#### **Technical Specifications**

| Mechanical properties                  | Standard   | Value<br>XY/XZ/ZX |
|----------------------------------------|------------|-------------------|
| Compression Set at 23 °C, 72 h (%)     | ISO 815    | 75,0              |
| Abrasion Resistance (mm <sup>3</sup> ) | ISO 4649   | 111,0             |
| Shore A Hardness (3 s)                 | ISO 7619-1 | 89,0              |
| Strain at Break TPE (%)                | ISO 527    | 280 / - / 9       |
| Stress at Break TPE (MPa)              | ISO 527    | 7 / - / 2         |
| Tear Strength (kN/m)                   | ISO 34-1   | 10/5/4            |



**Complete TDS** 

#### **Advanced Testing**

Skin Contact / Biocompatibility

ISO 10993-5; ISO 10993-10

Passed

## **Print Settings**

| Nozzle Temperature<br>[°C] | Build Chamber<br>Temperture [°C] | Bed Temperture [°C] | Bed Material    | Nozzle Diameter<br>[mm] | Print Speed [mm/s] |
|----------------------------|----------------------------------|---------------------|-----------------|-------------------------|--------------------|
| 260-280                    | -                                | 70-90               | PEI, PI or glue | ≥0,4                    | 10-30              |

## opology Optimization to improve str

Rapiana internal rib atmatenta

## **SOLUTIONS & SERVICES**

More than just material – From design to the finished product

Discover the full range of Ultrasim® 3D Services to support customers, from design for AM and simulation of part behavior to post-processing the final part.





## Ultrasim® 3D Lattice Design

Technologies: HP MJF Technologies SLS Technologies

#### Increased Comfort

- Aeration
- Weight Reduction
- Optimized Material Performance

# Ultrasim® 3D **Lattice Design**

## Suited for:



Footwear Industrial

Sports

Automotive

Medical Applications

Consumer Goods

50

Access all resources by scanning the QR code

ြစ်



This information and values are presented as guidance only and based on Forward AM's knowledge and experience. It is believed to be accurate, however all guarantees are explicitly denied. This document was updated September 2023.

#### Offers

|                                              | Starter:<br>Lattice Design<br>Service                                    | Premium:<br>Foam Replacement                                                           | Enterprise:<br>Full Engineering<br>Support                    |
|----------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Description                                  | Custom designed lattice<br>including partial and multi-<br>zone lattices | Custom foam replacement<br>lattice design using proprietary<br>FEA and lattice library | Complete product design<br>development lattice<br>engineering |
| STL file of digital lattice part             | 1.1                                                                      |                                                                                        | 1.1                                                           |
| Digital Stress-Strain Curves of all lattices | 1.1                                                                      |                                                                                        |                                                               |
| Customized 3D Printed Lattice sample         |                                                                          |                                                                                        |                                                               |
| Digital Stress-Strain Curves of tested foam  |                                                                          |                                                                                        | 1.1                                                           |
| Full Engineering                             |                                                                          |                                                                                        |                                                               |
| Material Compatibility                       | Full Ultrasint® Powders line                                             | Ultrasint® TPU01                                                                       | Full Ultrasint® Powders line                                  |
|                                              |                                                                          |                                                                                        | Full Ultracur3D®<br>Photopolymers line                        |
|                                              |                                                                          |                                                                                        | Full Ultrafuse® Filaments line                                |
|                                              |                                                                          |                                                                                        |                                                               |
|                                              |                                                                          |                                                                                        |                                                               |



## Ultrasim® 3D Lattice Engine

#### Material Compatibility:

Jltrasint® Powders

- Pre-selected, validated lattices
- One-click lattice engineering
- On-premise software solution

# Ultrasim® 3D Lattice Engine

## Suited for:







Footwear

Protection

# Access all resources by scanning the QR code

Seating



This information and values are presented as guidance only and based on Forward AM's knowledge and experience. It is believed to be accurate, however all guarantees are explicitly denied. This document was updated September 2023.

#### Workflow









#### 1. Upload STL

Upload your solid STL file and choose the material the part will be produced in.

#### 2. Select Lattice

Choose from pre-engineered lattices designed specifically for different applications by using either:

a) The Ultrasim® 3D Lattice Test Pad to select the desired lattice by feel.

b) The Ultrasim® 3D Lattice Library to select by mechanical data of stress-strain curves and specifying different mechanical properties.

#### 3. Generate and Download Lattice File

The selected lattice is automatically generated into the part. You can download the ready-to-print STL and print your part.



## Ultrasim® 3D Simulation (FEA)

#### Material Compatibility: Ultrasint® Powders

Ultracur3D® Photopolymers

- Ensure your design works
- Material data & modeling
- Quicker development cycles
- 3D design optimization

# Ultrasim® 3D Simulation (FEA)

## Suited for:



Access all resources by scanning the QR code



This information and values are presented as guidance only and based on Forward AM's knowledge and experience. It is believed to be accurate, however all guarantees are explicitly denied. This document was updated September 2023.

#### Offers

|                                                                    | Starter:<br>Raw Material Data                                                                                                                          | Premium:<br>3D Simulation as a<br>Service                                                                                                                                      | Enterprise:<br>Material Model as a<br>Service                                                                                                            |
|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description                                                        | Get the curves behind our<br>TDS data to start basic<br>simulation work. Add<br>additional temperatures or<br>strain-rates to the starter<br>solution. | We run the simulation for<br>you. We help you to speed<br>up your engineering process<br>and increases confidence<br>in part performance using a<br>digital twin of your part. | Use our in-house<br>developed material models<br>for 3D-Printing including<br>anisotropy of the process<br>and our experience in virtual<br>Engineering. |
| Material Data at room<br>temperature                               | 1.1                                                                                                                                                    | 1.1                                                                                                                                                                            |                                                                                                                                                          |
| 3D Simulation (FEA)<br>support                                     |                                                                                                                                                        | 1.1                                                                                                                                                                            | •                                                                                                                                                        |
| Ultrasim 3D material<br>model as a service (incl.<br>installation) |                                                                                                                                                        |                                                                                                                                                                                | •                                                                                                                                                        |
| Material Compatibility<br>(Preliminary Compatibility)              | Ultrasint® TPU01<br>Ultrasint® PA6 MF                                                                                                                  | Ultrasint® TPU01<br>Ultrasint® PA6 MF                                                                                                                                          | Ultrasint® TPU01<br>Ultrasint® PA6 MF<br>Ultracur3D® RG 35                                                                                               |
|                                                                    | Ultracur3D® RG 35<br>Ultracur3D® RG 1100<br>Ultracur3D® ST 45                                                                                          | Ultracur3D® RG 35<br>Ultracur3D® RG 1100<br>Ultracur3D® ST 45                                                                                                                  | Ultrasint® PA11<br>Ultrasint® PA11 ESD                                                                                                                   |
|                                                                    | Ultracur3D® ST 80<br>Ultracur3D® EPD 2006                                                                                                              | Ultracur3D® ST 80<br>Ultracur3D® EPD 2006                                                                                                                                      | Ultrasint® PA11 CF                                                                                                                                       |
|                                                                    | Ultrasint® PA11<br>Ultrasint® PA11 ESD<br>Ultrasint® PA11 CF                                                                                           | Ultrasint® PA11<br>Ultrasint® PA11 ESD<br>Ultrasint® PA11 CF                                                                                                                   |                                                                                                                                                          |
|                                                                    |                                                                                                                                                        |                                                                                                                                                                                |                                                                                                                                                          |

# Ultrasim® 3D Cost Analysis (TCO)

#### Material Compatibility:

Ultrasint® Powders Ultracur3D® Photopolymers Ultrafuse® Filaments

#### Transparent cost breakdown

- Compare AM technologies
- Sensitivity Analysis
- Cost potential of commercialization

# Ultrasim® 3D Cost Analysis (TCO)

## Suited for:



Footwear

Automotive

Sports

Industrial

രി Medical Applications

Consumer Goods

JO

Access all resources by scanning the QR code



This information and values are presented as guidance only and based on Forward AM's knowledge and experience. It is believed to be accurate, however all guarantees are explicitly denied. This document was updated September 2023.

#### Offers

|                                        | Starter:<br>Single Cost Pricing                                                              | Premium:<br>Cost<br>Benchmarking                                                                                        | Enterprise:<br>AM Cost Tool                                              |
|----------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Description                            | Understanding the cost<br>structure of your 3D printed<br>part and what drives the<br>costs. | Compare the costs of<br>several AM technologies<br>and understand what<br>technology might be most<br>suitable for you. | Use our in-house<br>developed AM Cost Tool<br>for your own calculations. |
| PDF Cost report                        | 1.1                                                                                          |                                                                                                                         | 1.1                                                                      |
| Cost comparison of two AM technologies |                                                                                              |                                                                                                                         | 1.1                                                                      |
| Sensitivity analysis                   |                                                                                              | •                                                                                                                       |                                                                          |
| AM cost tool                           |                                                                                              |                                                                                                                         |                                                                          |
| Material Compatibility                 | Full Ultrasint® Powders line                                                                 | Full Ultrasint® Powders line                                                                                            | Coming Soon                                                              |
|                                        | Full Ultracur3D®<br>Photopolymers line                                                       | Full Ultracur3D®<br>Photopolymers line                                                                                  |                                                                          |
|                                        | Full Ultrafuse® Filaments line                                                               | Full Ultrafuse® Filaments line                                                                                          |                                                                          |





## Ultrasim® Sustainability Analysis

#### Material Compatibility: Ultrasint® Powders

Jltrafuse® Filaments

- Transparency of sustainability by material and part
- Critically-reviewed Lifecycle
   Assessment Study: ISO 14040:2006
   & ISO 14044:2006
- Analysis of 16 environmental impact categories according to EF 3.0

# Ultrasim® 3D **Sustainability Analysis**

## Suited for:



Automotive

Footwear

Industrial

Sports

രി

Medical Applications

Consumer Goods

JO

Access all resources by scanning the QR code



This information and values are presented as guidance only and based on Forward AM's knowledge and experience. It is believed to be accurate, however all guarantees are explicitly denied. This document was updated September 2023.

#### Offers

| Starter:<br>Material LCA                                                                                       | Premium:<br>Part LCA Service<br>(CO2)                                                      | Enterprise:<br>Become a Partner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.1                                                                                                            |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                |                                                                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ultrasint® TPU01<br>Ultrasint® TPU 88A<br>Ultrasint® PP 1400 Black<br>Ultrasint® PA11<br>Ultrasint® PA11 Black | Ultrasint® TPU01<br>Ultrafuse® PLA<br>Ultrafuse® ABS<br>Ultrafuse® PET<br>Ultrafuse® rPET  | BASF Forward AM Materials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Ultrafuse® ABS<br>Ultrafuse® PET<br>Ultrafuse® rPET                                                            | Ultrasint® TPU 88A<br>Ultrasint® PP 1400 Black<br>Ultrasint® PA11<br>Ultrasint® PA11 Black |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                | Starter:<br>Material LCA                                                                   | Starter:<br>Material LCAPremium:<br>Part LCA Service<br>(CO2)Image: Part LCA Service<br>(Litrasint® Part Back<br>Ultrasint® Part Back<br>Ultrasint® Part Back<br>Ultrasint® PAth BackImage: Part LCA Service<br>Ultrasint® Part Back |



## Ultracur3D® Coat F+

#### Material Compatibility:

Ultrasint® Powders Ultracur3D® Photopolymers Ultrafuse® Filaments

#### Colors:

10+ Standard Colors Custom Color services available

#### Application Method:

Spraying





**Highly Flexible** 

Waterbased



Broad Color Portfolio

# Ultracur3D® Coat F+

## Suited for:



Automotive



Footwear

Industrial Sports

Medical Applications

Consumer Goods

00

Access all resources by scanning the QR code



This information and values are presented as guidance only and based on Forward AM's knowledge and experience. It is believed to be accurate, however all guarantees are explicitly denied. This document was updated September 2023.

## **Technical Specifications**

| Ph Value         DIN EN ISO 3251         7.0 - 8.0           Viscosity at 23°C, 1000 1/s         Spindle Viscometer         100 - 300 mPas           Density at 23°C         DIN EN ISO 2811-3         1.0 - 1.3 g/cm³           Solid content         DIN EN ISO 3251         34 - 48%           Flashpoint         ISO 3679         > 95°C | Mechanical properties       | Standard           | Typical Value               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------|-----------------------------|
| Viscosity at 23°C, 1000 1/s         Spindle Viscometer         100 – 300 mPas           Density at 23°C         DIN EN ISO 2811-3         1.0 – 1.3 g/cm³           Solid content         DIN EN ISO 3251         34 – 48%           Flashpoint         ISO 3679         > 95°C                                                              | Ph Value                    | DIN EN ISO 3251    | 7.0 - 8.0                   |
| Density at 23°C         DIN EN ISO 2811-3         1.0 – 1.3 g/cm³           Solid content         DIN EN ISO 3251         34 – 48%           Flashpoint         ISO 3679         > 95°C                                                                                                                                                      | Viscosity at 23°C, 1000 1/s | Spindle Viscometer | 100 – 300 mPas              |
| Solid content         DIN EN ISO 3251         34 – 48%           Flashpoint         ISO 3679         > 95°C                                                                                                                                                                                                                                  | Density at 23°C             | DIN EN ISO 2811-3  | 1.0 – 1.3 g/cm <sup>3</sup> |
| Flashpoint ISO 3679 > 95°C                                                                                                                                                                                                                                                                                                                   | Solid content               | DIN EN ISO 3251    | 34 - 48%                    |
|                                                                                                                                                                                                                                                                                                                                              | Flashpoint                  | ISO 3679           | > 95°C                      |



**Complete TDS** 

## **Tests & Certifications**

| Skin Contact | UV Stability        | Hydrolysis Resistance |
|--------------|---------------------|-----------------------|
| ISO 10002 5  | ISO 4892-2A         | 70°C / 05% rH / 169b  |
| 100 10990-0  | ISO 4892-2B Cycle 3 | 70 07 95% 117 1001    |

## **User Guidelines**

| Mixing Ratio      | Hardener                   | Reducer      | Potlife at 20°C   | Shelf life (5-35°C) |                    |
|-------------------|----------------------------|--------------|-------------------|---------------------|--------------------|
| 100 : 4 by weight | Ultracur3D®<br>Hardener F+ | DI-Water     | 2 h               | 6 months            |                    |
| Nozzle pressure   | Nozzle size                | Spray passes | Flash off at 23°C | Dry film thickness  | Drying conditions  |
| 2 – 2.5 bar       | 1.3 mm                     | 1.5 - 2      | 5 min             | 25 ± 5 µm           | 30 minutes at 80°C |

## **Material Compatibility**

Ultrasint® TPU01 Ultrasint® TPU 88A Ultrasint® PA11 Ultrasint® PA11 Black CE

Ultracur3D® RG 35 Ultracur3D® ST 45 Ultracur3D® FL 300 Ultracur3D® FL 60

Ultracur3D® EL 60 Ultracur3D® EL 4000 Ultracur3D® EPD 1086 Ultrafuse® ASA Ultrafuse® TPU 85A Ultrafuse® TPU 90A Ultrafuse® TPU 64D Ultrafuse® TPS 90A



# Have a 3D printing project in mind?

At Forward AM, we drive the industrialization of Additive Manufacturing.

We accompany customers from first idea to final printed part - on global scale, at highest quality.

Get in touch with us:

sales@basf-3dps.com



Speyerer Straße 4 69115 Heidelberg, Germany

+49 6221 67417900

sales@basf-3dps.com

forward-am.com