FORWARD AM TECHNICAL GUIDE

Machining and Processing Guide for Ultracur3D[®] RG 3280

This guide provides essential information on the machining parameters and processing recommendations for RG 3280. The guide covers drilling, milling, tapping, sanding, and tumbling processes to achieve optimal results.

MORE ABOUT Ultracur3D[®] RG 3280

Cutting parameters for milling and drilling – Ultracur3D[®] RG 3280

		Drilling					
	$n = \frac{v_c \times 1000}{\pi \times d}$	Tool	n [RPN	/] \ [m/	/ _c nin]	Comment	
n (RPM)	Revolutions per minute	D4,2 HSS Drill	1800 - 22	200 25 -	- 30 Good low pr	Good and easy progression. Only ow pressure to reduce chipping on entrance and exit of hole. Drill the hole in small steps. Holes >D5 should be printed and redrilled	
v _c [m/min] d [mm]	Cutting speed Cutting tool diameter	D8,5 HSS Drill	1000 - 15	500 25 -	entran 40 hole in should		
	$v_{f} = n \times f_{r} \times z_{r}$	Milling					
	$j = 1 \cdot j_2 \cdot \cdot z_n$	Tool	n [RPM]	v _c [m/min]	v _f [mm/min]	Comment	
[mm/min] [mm]	tool speed Revolutions per minute (RPM) blade feed # Blades of cutting tool	D10 Carbide coated 4 bladed HSS mill cutter	1800 - 2500	55 - 100	200 - 500	Cutting depth of 0,5mm – 1mm work well for higher feed rates, ~0,2mm for slower feeds, resulting in smoother surface. Up cut milling gives better results.	
Ve recommend to start slow (bold values in the tables) and gradually ncrease until good results are ound with the used equipment		D35 3 bladed mill cutter with coated indexable inserts	850-1000	65 -75	200 -300	Best results achieved with this mill bit for flattening and circumferential milling for all cutting depth from 1mm to 0,1mm	
Freshly sharpened tools give best esults.		D40 HSS 6 bladed mill cutter	1000 - 1500	100 - 150	100 - 300	Cutting depth of 0,5mm – 1mm work well for higher feed rates, ~0,2mm for slower feeds, resulting in smoother surface. Up cut milling gives better results.	

forward **AM**

Disclaimer: These recommendations are non-binding and do not release the purchaser from suitability tests.

Other processing reccomandations – Ultracur3D[®] RG 3280

- Use cutting oil to greatly improve results.
- Manual tapping works effectively up to a diameter of M5. Larger diameters tend to chip.
- Ideally, threads should be printed directly and only recut.

- Sanding quickly evens out small irregularities.
- Regular sandpaper of any grit can be used for effective results.
- Consistent sanding pressure ensures a smooth and uniform surface finish.

- Parts made from Ultracur3D[®] RG 3280 can be smoothed in a polishing machine or tumbler.
- After 90 minutes at 290 RPM with PM10 grinding chips (medium size and roughness abrasive medium), edges are slightly rounded and the surface is smooth and homogeneous.

forward **A**M

Disclaimer: These recommendations are non-binding and do not release the purchaser from suitability tests.

List of used equipment – Ultracur3D[®] RG 3280

Equipment	Purpose				
Drill Press	Used for drilling holes with precise control				
Drill Bit Set	Various sizes used for drilling and tapping				
Cutting Oil	Used to improve the quality of tapping				
Tapping Tool	Used for manual tapping of threads				
Sanding Machine	Used for sanding surfaces to smooth out irregularities				
Tumbling Machine (Otec Eco Maxi)	Used for tumbling parts to achieve a smooth and homogeneous surface				
Grinding Chips (PM10)	Abrasive medium used in the tumbling process				
Machined Part	Example of a part machined for testing				

forward **AM**.

Disclaimer: These recommendations are non-binding and do not release the purchaser from suitability tests.