

Ficha técnica

Ultrafuse PLA

Fecha de revisión: 29.12.2020 Versión: 4.4

Información general

Componentes

Filamento de ácido poliláctico para modelado por deposición fundida.

Descripción del producto

El PLA es uno de los materiales más usados en la impresión 3D. BASF 3DPS dispone de PLA en una amplia gama de colores. Su aspecto brillante atrae con frecuencia a quienes imprimen modelos para exhibición o artículos para el hogar. Su origen vegetal es apreciado por muchas personas. Correctamente enfriado, el PLA ofrece una alta velocidad de impresión y bordes muy definidos. Si a ello le sumamos la baja deformabilidad del modelo impreso, resulta un plástico muy popular para impresoras domésticas, aficionados a la impresión 3D, creación de prototipos y centros educativos.

Presentación comercial y almacenamiento

El filamento Ultrafuse PLA debe almacenarse en su envase hermético original, en un lugar limpio y seco, a una temperatura entre 15 y 25 °C. Una vez almacenado, el producto tendrá una vida útil mínima de 12 meses si se respetan las condiciones recomendadas de almacenamiento.

Seguridad del producto

Recomendaciones: Procese los materiales en una sala bien ventilada o use sistemas profesionales de extracción de aire. Para obtener información adicional en más detalle, consulte la ficha de datos de seguridad del producto.

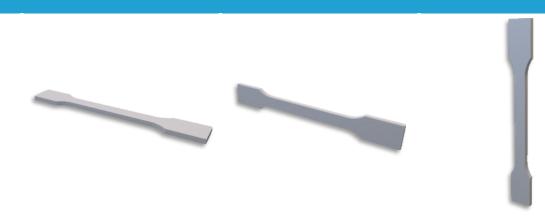
Aviso

La información contenida en el presente documento se basa en nuestro conocimiento y nuestra experiencia actuales. Debido a los numerosos factores que pueden afectar al procesamiento y la aplicación de nuestro producto, la presente información no exime a los responsables del procesamiento de la obligación de llevar a cabo sus propias investigaciones y pruebas; asimismo, tampoco implica ningún tipo de garantía en relación con propiedades específicas o con la idoneidad del producto para un determinado fin. Las descripciones, los esquemas, las fotografías, los datos, las proporciones, los pesos, etc., incluidos en el presente documento pueden sufrir cambios sin previo aviso y no deben considerarse como elementos contractuales que garanticen una determinada calidad del producto. El receptor de nuestros productos es el responsable de asegurarse de que se respeten las leyes de propiedad intelectual y el resto de disposiciones legales aplicables.

Parámetros recomendados de procesamiento para impresión 3D				
Temperatura de la boquilla	210 – 230 °C / 410 – 446 °F			
Temperatura de la cámara de impresión	-			
Temperatura de la cama	50 – 70 °C / 122 – 158 °F			
Material de la cama	Vidrio			
Diámetro de la boquilla	≥ 0.4 mm			
Velocidad de impresión	40 - 80 mm/s			

Recomendaciones de secado

Recomendaciones de secado para garantizar una impresión correcta


El filamento Ultrafuse® PLA se ofrece en estado imprimible y no requiere secado.

Propiedades generales		Norma
Densidad de las piezas impresas	1248 kg/m³ / 77.9 lb/ft³	ISO 1183-1

Propiedades térmicas		Norma
Temperatura de deformación (HDT) con una carga de 1,8 MPa	55 °C / 131 °F	ISO 75-2
Temperatura de deformación (HDT) con una carga de 0,45 MPa	65 °C / 149 °F	ISO 75-2
Temperatura de transición vítrea	61 °C / 142 °F	ISO 11357-2
Temperatura de fusión	151 °C / 304 °F	ISO 11357-3
Caudal volumétrico de fusión	21.2 cm ³ /10 min / 1.29 in ³ /10 min (220 °C, 5 kg)	ISO 1133

Propiedades mecánicas

Dirección de impresión	Norma	XY	XZ	ZX
		Plana	Apoyada en el canto	Vertical
Resistencia a la tracción	ISO 527	34.7 MPa / 5.0 ksi	-	21.2 MPa / 3.1 ksi
Alargamiento de rotura	ISO 527	4.2 %	-	1.2 %
Módulo de Young	ISO 527	2308 MPa / 335 ksi	-	2131 MPa / 309 ksi
Resistencia a la flexión	ISO 178	98.0 MPa / 14.2 ksi	105 MPa / 15.2 ksi	54.9 MPa / 8.0 ksi
Módulo de flexión	ISO 178	1860 MPa / 270 ksi	1708 MPa / 247 ksi	1715 MPa / 249 ksi
Deformación por flexión en el punto de rotura	ISO 178	4.8 %	4.2 %	1.9 %
Resistencia al impacto (ensayo Charpy con probeta entallada)	ISO 179-2	2.5 kJ/m²	1.9 kJ/m²	1.7 kJ/m²
Resistencia al impacto (ensayo Charpy con probeta no entallada)	ISO 179-2	13.2 kJ/m²	14.3 kJ/m²	4.3 kJ/m²
Resistencia al impacto (ensayo Izod con probeta entallada)	ISO 180	3.3 kJ/m²	2.1 kJ/m²	1.6 kJ/m²
Resistencia al impacto (ensayo Izod con probeta no entallada)	ISO 180	11.0 kJ/m²	9.6 kJ/m²	4.7 kJ/m²

BASF 3D Printing Solutions BV sales@basf-3dps.com www.forward-am.com