Ultrafuse® Reinforced Filament Comparison ## Glass fiber and carbon fiber reinforced Filaments | Carbon fiber reinforced materials | Glass fiber reinforced materials | |---|---| | Organic | Non-organic | | High orientationLarge anisotropyGood elastical propertiesHigh strength | Amorphous | | Very light | Light | | Electrical conductor | Electrical isolatorHigh resistivityHigh dielectrical strength | | High stiffness | Thermalinsulator | | Material | Benefits | Applications | |-----------------------|---|---| | Ultrafuse® PAHT CF 15 | When conditioned, highest flexural strengthLower moisture uptake than PA | ESD applications | | Ultrafuse® PET CF 15 | When conditioned, highest tensile strengthEasiest printability | Jigs and fixtures | | Ultrafuse® PA6 GF30 | When conditioned, highest impact strengthResistance to oils and greases | Automotive | | Ultrafuse® PC GF30 | highest heat resistanceUL94 V0 flame retardancy | Light weight applications such as drones, sport instruments | | Ultrafuse® PP GF30 | Very good chemical resistanceLow moisture uptake | Railway applications | All Ultrafuse® Reinforced materials are printable on desktop printers - Ultrafuse® PAHT CF 15 ■ Ultrafuse® PA6 GF 30 ■ Ultrafuse® PP GF 30 - Ultrafuse® PET CF 15 ■ Ultrafuse® PC GF 30 ## Other Resources - Ultrafuse® PP GF 30 Elite Biathletes Reach Peak Performance with Athletics 3D and Forward AM - Ultrafuse® PET CF 15 Orthoses - Ultrafuse® PAHT CF 15 Increasing Part Stiffness of Lightweight FFF End-Use Parts by Simulation